Pre-Calculus: 3.1-3.2 Review
Exponential and Logarithmic Functions and Models

Name: \qquad
Date: \qquad Hour: \qquad
\qquad
\square

1. Determine whether each of the functions are exponential growth, decay or not exponential. If it is growth or decay, find the percentage rate for the function. (8 points)
A. $a(x)=3 \cdot 0.50^{x}$
Decay; 50\%
C. $c(x)=-3 \cdot 2^{x}$
Growth; 100\%
B. $b(x)=4 \cdot x^{2}$
Not Exponential
D. $d(x)=x^{\pi}$
Not Exponential
2. Choose a basic exponential growth function from number 1 and determine the following. (12 points)

Which Function: $-3 \cdot 2^{x}$
A. Base: \qquad 2
B. Initial Value: $-3 \cdot 2^{0}=-1 \cdot 1=-3$
C. Asymptote (s): $y=0$
D. Domain: $(-\infty, \infty)$
E. Range: $(-\infty, 0)$
3. Compute the exact value of the function for the given x -value without using a calculator. (8 points)

$f(x)=-2 \cdot 4^{x}$
$x=-1$
$-2 \cdot 4^{-1}$
$-2 \cdot \frac{1}{4^{1}}=-\frac{2}{4}=-\frac{\mathbf{1}}{\mathbf{2}}$

Solution: \qquad Solution: \qquad Solution: \qquad Solution: \qquad
4. Find the exponential function that satisfies the given conditions. (8 points)
A. Initial value $=20$, increasing at a rate of 42.5% per year.

$$
\begin{gathered}
f(x)=a \cdot b^{x} \\
a=20 ; b=42.5 \% \rightarrow 0.425 \\
\text { Increasing: } 1+0.425=1.425 \\
\boldsymbol{f}(\boldsymbol{x})=\mathbf{2 0}(\mathbf{1 . 4 2 5})^{x} \\
\hline
\end{gathered}
$$

Solution: \qquad
B. Initial mass $=49 \mathrm{~g}$, decreasing at a rate of 4.67% every 4 days.

$$
\begin{gathered}
f(x)=a \cdot b^{x} \\
a=49 ; b=4.67 \% \rightarrow 0.0467 \\
\text { Decreasing: } 1-0.0467=0.9533 \\
\boldsymbol{f}(\boldsymbol{x})=\mathbf{4 9}(\mathbf{0 . 9 5 3 3})^{x}
\end{gathered}
$$

Solution: \qquad
Pre-Calculus: Complex Numbers and Finding Zeros of Polynomial Functions
5. The population of Fowlerville is 565,000 and it is decreasing at a rate of 6.3% per year.
a. Write an equation $\mathrm{P}(t)$ for the population at time t years from now. (4 points)

$$
\begin{gathered}
P(t)=P_{0}(1 \pm r)^{t} \\
a=565000 ; b=6.3 \% \rightarrow 0.063 \\
\text { Decreasing: } 1-0.063=0.937 \\
\boldsymbol{P}(\boldsymbol{t})=\mathbf{5 6 5 0 0 0}(\mathbf{0 . 9 3 7})^{t}
\end{gathered}
$$

Solution: \qquad
b. Predict the population 7 years from now. (2 points)

$$
\begin{gathered}
P(t)=565000(0.937)^{t} \\
t=7 \\
P(t)=565000(0.937)^{7} \\
P(t)=\mathbf{3 5 8}, \mathbf{2 5 2}
\end{gathered}
$$

Solution: \qquad
6. The population of Burkeville in 1993 was 48,000 . It is and growing at a rate of 3.2% per year.
A. Write an equation for the exponential situation. (4 points)

$$
\begin{gathered}
P(t)=P_{0}(1 \pm r)^{t} \\
a=48000 ; b=3.2 \% \rightarrow 0.032 \\
\text { Increasing: } 1+0.032=1.032 \\
\quad \boldsymbol{P}(\boldsymbol{t})=48000(\mathbf{1 . 0 3 2})^{t}
\end{gathered}
$$

\qquad
B. When will the population be triple of the original amount? (2 points)

$$
\begin{gathered}
P(t)=48000(1.032)^{t} \\
P(t)=48000 * 3=144000
\end{gathered}
$$

So, plug in $P(t)$ into your calculator and find where the " y-value" approaches 144000.

- It happens between 34 and 35 , exactly 34.9 . Thus, 35 years later. So, $1993+35=2028$. \qquad

7. Given the following points, determine the exponential equation. (4 points)
$(2,2.6889)$ and $(0,4)$

$$
\begin{gathered}
f(x)=a \cdot b^{x} \\
a=4 \\
4 \cdot b^{x} ; x=2 \rightarrow 4 \cdot b^{2}=2.6889 \\
b^{2}=0.672225 \rightarrow \text { Square Root both Sides } \rightarrow b=0.8199 \\
\boldsymbol{f}(\boldsymbol{x})=\mathbf{4} \cdot(\mathbf{0 . 8 1 9 9})^{x}
\end{gathered}
$$

Solution: $f(x)=$ \qquad
8. Determine exponential equation $f(x)$ and $g(x)$ based on values given in the following table. $(8$ points)

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$
-2	.125	16
-1	.5	8
0	2	4
1	8	2
2	32	1

$f(x)$
$f(x)=a \cdot b^{x}$
$a=2$
$2 \cdot b^{x} ; x=1 \rightarrow 2 \cdot b^{1}=8$
$b=4$
$f(x)=2(4)^{x}$
$f(x)=$

$g(x)$
$g(x)$
$g(x)=a \cdot b^{x}$
$a=4$
$4 \cdot b^{x} ; x=1 \rightarrow 4 \cdot b^{1}=2$
$b=\frac{2}{4}=\frac{1}{2}$ or 0.5
$f(x)=4\left(\frac{1}{2}\right)^{x}$ or $\boldsymbol{f}(\boldsymbol{x})=4(0.5)^{x}$
$g(x)=$

