Pre-Calculus: 2.1-2.4
Polynomial, Power and Monomial Functions, Graph Behavior and Division

Name: $\qquad$
Date: $\qquad$ Hour: $\qquad$
SCORE: $\qquad$ / 72
Percent Correct: $\qquad$ \%

| $16 / 8 / 4$ | Correct, complete, with appropriate work or explanations. |
| :--- | :--- |
| $12 / 6 / 3$ | Correct strategy, minor errors, appropriate work or explanations. |
| $8 / 4 / 2$ | Starts with appropriate strategy, some understanding, some errors. |
| $4 / 2 / 1$ | Attempted appropriate strategy, minimal understanding. |
| 0 | Little or no understanding evident - OR - no work shown. |

Be sure to SHOW ALL WORK. Answer questions completely. Be sure to write answers in spaces provided. If work or answers are in another location, please make note of that.
There are 72 points possible.

1. Using the Rational Zero Theorem, find all of the zeros for the polynomial function. ( $\mathbf{1 2}$ points)

$$
f(x)=x^{4}+9 x^{3}+14 x^{2}-54 x-120
$$

Zeros: $\qquad$
2. State the end behavior for the following functions: (6 points)
i. $\quad f(x)=-5 x^{3}+4 x^{2}-8$ $\qquad$ and $\qquad$
ii. $\quad f(x)=-3 x^{6}-x^{4}+7 x^{2}+2$ $\qquad$ and $\qquad$
iii. $\quad f(x)=2 x^{5}-5 x+9$ $\qquad$ and $\qquad$
3. Find the vertex and axis of symmetry for the following quadratic function. (4 points)

$$
f(x)=-2 x^{2}-12 x+4
$$

Vertex: $\qquad$
Axis of Symmetry: $\qquad$
4. Divide $f(x)=-4 x^{4}+x^{3}+2 x^{2}+3 x-1$ by $d(x)=x-1$. (4 points)

## Fraction Form:

5. Determine whether the following are polynomial, power or monomial functions. If so, state by underlying the correct term and filling in the blank appropriately. $\mathbf{( 8}$ points)
A. $f(x)=4 x^{3}$
B. $f(x)=-3 x^{5}+2 x^{3}-5$

Circle all that apply:
Polynomial Power Monomial
Degree/Power: $\qquad$
Leading Coefficient/C.O.V.: $\qquad$

Circle all that apply:
Polynomial Power Monomial
Degree/Power: $\qquad$
Leading Coefficient/C.O.V.: $\qquad$
6. Find the quadratic equation that has a vertex of $(-4,13)$ and point $(-6,1)$. (4 points)

Final Equation: $\qquad$
7. State the degree and zeros of the polynomial function. State the multiplicity of each zero and what the behavior of the graph is at that zero (crosses/kisses). (10 points)

$$
f(x)=(x+5)^{4}(x-2)(x-6)^{3}
$$

Degree: $\qquad$

| Zeros | Multiplicity | Crosses/Kisses |
| :---: | :---: | :---: |
| $x=$ |  |  |
| $x=$ |  |  |
| $x=$ |  |  |

8. Write the statements below as a power function equation. (4 points)

| $m$ varies directly with the fourth root of $t$. |  |
| :--- | :--- |
| $g$ is inversely proportional to the cube of $f$. |  |

9. Write a sentence that expresses the relationship in the power formula, using the language of variation or proportion. (4 points)

| $y=-5 x^{-3}$ |  |
| :---: | :--- |
| $V=\frac{4}{3} \pi r^{3}$ |  |
| $(V=$ Volume and $r=$ radius $)$ |  |

10. Given the graph, state the following: (4 points)

i. Number of Zeros: $\qquad$
ii. Number of Extrema: $\qquad$
11. Using long division, divide $f(x)=3 x^{4}+2 x^{3}+10 x^{2}+4 x-5$ by $d(x)=x^{2}+2 .(8$ points $)$

## Polynomial Form:

$\qquad$
12. Write the equation for the linear equation with the points $(-3,5)$ and $(-4,8)$. (4 points)

Final Equation: $\qquad$

