Pre-Calculus: 2.1 – 2.4 Polynomial, Power and Monomial Functions, Graph Behavior and Division Name: _____

Date: _____ Hour: ____

SCORE: ____ / 72
Percent Correct: ____%

Be sure to SHOW ALL WORK. Answer
questions completely. Be sure to write
answers in spaces provided. If work or
answers are in another location, please
make note of that.
There are 72 points possible.

16/8/4Correct, complete, with appropriate work or explanations.12/6/3Correct strategy, minor errors, appropriate work or explanations.8/4/2Starts with appropriate strategy, some understanding, some errors.4/2/1Attempted appropriate strategy, minimal understanding.0Little or no understanding evident – OR – no work shown.

1. Using the Rational Zero Theorem, find all of the zeros for the polynomial function. (12 points) $f(x) = x^4 + 9x^3 + 14x^2 - 54x - 120$

Zeros: _____

- 2. State the end behavior for the following functions: (6 points)
 - i. $f(x) = -5x^3 + 4x^2 8$ and _____ii. $f(x) = -3x^6 x^4 + 7x^2 + 2$ and _____iii. $f(x) = 2x^5 5x + 9$ and _____
- 3. Find the vertex and axis of symmetry for the following quadratic function. (4 points) $f(x) = -2x^2 12x + 4$

Vertex: ______ Axis of Symmetry: _____

4. Divide
$$f(x) = -4x^4 + x^3 + 2x^2 + 3x - 1$$
 by $d(x) = x - 1$. (4 points)

Fraction Form:

5. Determine whether the following are polynomial, power or monomial functions. If so, state by underlying the correct term and filling in the blank appropriately.(8 points)

<u>Circle **all** that apply:</u> Polynomial Power Monomial Degree/Power: _____ Leading Coefficient/C.O.V.: _____

A. $f(x) = 4x^3$

B.
$$f(x) = -3x^5 + 2x^3 - 5$$

<u>Circle all that apply:</u> Polynomial Power Monomial Degree/Power: _____ Leading Coefficient/C.O.V.: _____

6. Find the <u>quadratic equation</u> that has a **vertex** of (-4, 13) and **point** (-6, 1). (4 points)

Final Equation: _____

7. State the degree and zeros of the polynomial function. State the multiplicity of each zero and what the behavior of the graph is at that zero (crosses/kisses). (10 points)

$$f(x) = (x+5)^4(x-2)(x-6)^3$$

Degree: _____

Zeros	Multiplicity	Crosses/Kisses
x =		
<i>x</i> =		
<i>x</i> =		

Pre-Calculus: Graph Transformations and Evaluating Functions

8. Write the statements below as a power function equation. (4 points)

m varies directly with the fourth root of t .	
g is inversely proportional to the cube of f .	

9. Write a sentence that expresses the relationship in the **power** formula, using the language of variation or proportion. (**4 points**)

$$y = -5x^{-3}$$

$$V = \frac{4}{3}\pi r^{3}$$

$$(V = Volume and r = radius)$$

10. Given the graph, state the following: (4 points)

- i. Number of Zeros: _____
- ii. Number of Extrema: _____

11. Using long division, divide $f(x) = 3x^4 + 2x^3 + 10x^2 + 4x - 5$ by $d(x) = x^2 + 2$.(8 points)

Polynomial Form:

12. Write the equation for the linear equation with the **points** (-3,5) and (-4,8). (4 points)