Answer:

$$
\begin{aligned}
& \text { a) } x=7, x=-\frac{4}{3}, x=-6 \\
& \text { b) }\left(-6,-\frac{4}{3}\right) \cup(7, \infty) \\
& \text { c) }(-\infty, 6) \cup\left(-\frac{4}{3}, 7\right)
\end{aligned}
$$

Station \#1

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Describe how the graph of the given function can be obtained by transforming the graph of the rational function $f(x)=\frac{1}{x}$.

$$
f(x)=\frac{7 x-1}{x-5}
$$

Answer:
a) $x=-\frac{1}{5}, x=3$
b) $\left(-\infty,-\frac{1}{5}\right) \cup(3, \infty)$
c) $\left(-\frac{1}{5}, 3\right)$

Station \#2

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Describe how the graph of the given function can be obtained by transforming the graph of the rational function $f(x)=\frac{1}{x}$.

$$
f(x)=\frac{-4}{x-5}
$$

Answer:

 A
Station \#3

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Evaluate the limit based on the graph $f(x)$ shown.
a) $\lim _{x \rightarrow 2^{+}} f(x)$
b) $\lim _{x \rightarrow 2^{-}} f(x)$
c) $\lim _{x \rightarrow \infty} f(x)$
d) $\lim _{x \rightarrow-\infty} f(x)$

Answer:

a) $x=5$
b) $x=8, x=-3$ and $(-\infty,-3)$
c) $(-3,5) \cup(8, \infty)$
d) $(5,8)$

Station \#4

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Evaluate the limit based on the graph $f(x)$ shown.
a) $\lim _{x \rightarrow-4^{+}} f(x)$
b) $\lim _{x \rightarrow-4^{-}} f(x)$
c) $\lim _{x \rightarrow \infty} f(x)$
d) $\lim _{x \rightarrow-\infty} f(x)$

Answer:

> a) $x=\frac{3}{2}, x=-1$
> b) $x=-8$
> c) $(-8,-1) \cup\left(\frac{3}{2}, \infty\right)$
> d) $(-\infty,-8) \cup\left(-1 . \frac{3}{2}\right)$

Station \#5

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

For the given function, find the vertical asymptote and horizontal/slant asymptotes. Also find the x-intercept and y-intercept.

$$
f(x)=\frac{x^{2}-3 x-4}{x+6}
$$

Answer:

Station \#6

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

For the given function, find the vertical asymptote and horizontal/slant asymptotes. Also find the x-intercept and y-intercept.

$$
f(x)=\frac{x-4}{x^{2}+9}
$$

Answer:

B

Station \#7

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Solve the equation algebraically:

$$
\frac{1}{x+7}+\frac{2}{x+3}=\frac{-4}{x^{2}+10 x+21}
$$

A. $x=-3$
C. $x=-3,-7$
B. $x=-7$
D. No Solution

Answer:
a) $x=-6$
b) $x=-\frac{1}{2}, x=2$, and $(-\infty,-6)$
c) $\left(-6,-\frac{1}{2}\right) \cup(2, \infty)$
d) $\left(-\frac{1}{2}, 2\right)$

Station \#8

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Solve the equation algebraically:

$$
\frac{x}{2 x+2}=\frac{-2 x}{4 x+4}+\frac{2 x-3}{x+1}
$$

Answer:
a) ∞
b) $-\infty$
c) 5
d) 5

Station \#9

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Determine the x values that cause the polynomial function to be (a) zero, (b) positive, and (c) negative.

$$
f(x)=(x-7)(3 x+4)(x+6)
$$

Answer:
a) ∞
b) $-\infty$
c) 0
d) 0

Station \#10

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Determine the x values that cause the polynomial function to be (a) zero, (b) positive, and (c) negative.

$$
f(x)=(5 x+1)\left(x^{2}+2\right)(x-3)
$$

Answer:

- H - Right 5
- S - Vertically stretch by 34
- R - None
- V - Up 7

Station \#11

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Determine the x values that cause the polynomial function to be (a) zero, (b) undefined, (c) positive, and (d) negative.

$$
f(x)=\frac{(2 x-3)(x+1)}{x+8}
$$

Answer:

- V.A.: None
- X -Intercept: $(4,0)$
- H.A.: $y=0$
- Y-Intercept: $\left(0,-\frac{4}{9}\right)$
- S.A.: None

Station \#12

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Determine the x values that cause the polynomial function to be (a) zero, (b) undefined, (c) positive, and (d) negative.

$$
f(x)=\frac{\sqrt{x+6}}{(2 x+1)(x-2)}
$$

Answer:

Station \#13

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Determine the x values that cause the polynomial function to be (a) zero, (b) undefined, (c) positive, and (d) negative.

$$
f(x)=\frac{x-5}{(x-8) \sqrt{x+3}}
$$

Answer:

$$
x=3
$$

Station \#14

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Solve the polynomial inequality.

$$
(2 x+3)(x-6)(3 x-7) \leq 0
$$

$$
\begin{array}{ll}
\text { A. }\left(-\infty,-\frac{3}{2}\right] \cup\left[\frac{7}{3}, 6\right] & \text { C. }\left[-\infty,-\frac{3}{2}\right] \cup\left[\frac{7}{3}, 6\right] \\
\text { B. }\left(-\infty,-\frac{3}{2}\right) \cup\left(\frac{7}{3}, 6\right) & \text { D. }\left(-\infty, \frac{7}{3}\right] \cup\left[-\frac{3}{2}, 6\right]
\end{array}
$$

Answer:

- H - Right 5
- S - Vertically stretch by 4
- R - Reflection over the x-axis.
- V - None

Station \#15

[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Solve the polynomial inequality.

$$
2 x^{3}+3 x^{2}-32 x-48>0
$$

A. $\left[-4,-\frac{3}{2}\right] \cup[4, \infty)$
C. $\left(-4,-\frac{3}{2}\right) \cup(4, \infty)$
B. $\left(4,-\frac{3}{2}\right) \cup(-4, \infty]$
D. None

Answer:

- V.A.: $x=-6$
- H.A.: None
- S.A.: $y=x-9 \quad \bullet Y-$ Intercept: $\left(0,-\frac{2}{3}\right)$
-X-Intercept: $(-1,0)$ and $(4,0)$
[After you find the answer, find the next station. Remember to LOOK for the answer in the box at the top of each station!]

Solve the polynomial inequality.

$$
\frac{x^{2}+2 x-35}{x^{2}-4 x+4} \geq 0
$$

A. $(-\infty,-7] \cup[5, \infty)$
B. $(-\infty,-7) \cup(5, \infty)$
C. $[-7,5]$
D. $(-7,5$

